Track 6: Quantum Materials

These are materials where the astonishing effects of quantum mechanics give rise to unique and frequently amazing features. While all materials have quantum mechanical features, 'quantum materials' have properties including quantum fluctuations, quantum entanglement, quantum coherence, and topological behaviour that are unique to them.

The reality is that quantum materials are in technology that you have likely previously seen, such as hospital MRIs, which employ superconductors, and hard disc drives, which use huge magneto resistance sensors. Quantum materials, on the other hand, are still uncommon in energy systems.

Strong interactions between magnetic moments, electrons, and the underlying crystal structure are common in today's most fascinating materials, generating strong linkages between these distinct parts of the system. Such materials can exhibit fascinating physical behaviours that necessitate the development of novel quantum mechanical models to explain. Superconductors, magnets, topological insulators, and multiferroics are among examples.


    Related Conference of Track 6: Quantum Materials

    April 10-11, 2025

    3rd World Congress on Quantum Physics

    Dubai, UAE
    June 24-25, 2025

    7th International Congress onPhysics

    Chicago, USA

    Track 6: Quantum Materials Conference Speakers

      Recommended Sessions

      Related Journals

      Are you interested in